Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
- 
            The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.more » « lessFree, publicly-accessible full text available March 6, 2026
- 
            A search is performed for dark matter particles produced in association with a resonantly produced pair of b-quarks with 30 < mbb < 150 GeV using 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. This signature is expected in extensions of the standard model predicting the production of dark matter particles, in particular those containing a dark Higgs boson s that decays into bb¯. The highly boosted s → bb¯ topology is reconstructed using jet reclustering and a new identification algorithm. This search places stringent constraints across regions of the dark Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs bosons with masses between 30 and 150 GeV in benchmark scenarios with Z0 mediator masses up to 4.8 TeV at 95% confidence level.more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            A<sc>bstract</sc> The paper presents a search for supersymmetric particles produced in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb−1. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle$$ {\overset{\sim }{\chi}}_1^0 $$ , is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of$$ {\overset{\sim }{\chi}}_1^0 $$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Abstract The ATLAS tile calorimeter (TileCal) is the hadronic sampling calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider (LHC). This paper gives an overview of the calorimeter’s operation and performance during the years 2015–2018 (Run 2). In this period, ATLAS collected proton–proton collision data at a centre-of-mass energy of 13 TeV and the TileCal was 99.65% efficient for data-taking. The signal reconstruction, the calibration procedures, and the detector operational status are presented. The performance of two ATLAS trigger systems making use of TileCal information, the minimum-bias trigger scintillators and the tile muon trigger, is discussed. Studies of radiation effects allow the degradation of the output signals at the end of the LHC and HL-LHC operations to be estimated. Finally, the TileCal response to isolated muons, hadrons and jets from proton–proton collisions is presented. The energy and time calibration methods performed excellently, resulting in good stability and uniformity of the calorimeter response during Run 2. The setting of the energy scale was performed with an uncertainty of 2%. The results demonstrate that the performance is in accordance with specifications defined in the Technical Design Report.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called omnifold is used to produce a simultaneous measurement of twenty-four Z+jets observables using 139 /fb of proton-proton collisions at sqrt(s) = TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible reuse in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            A<sc>bstract</sc> A search is presented for new particles produced in proton-proton collisions at a centre-of-mass energy of 13 TeV that result in final states comprising a massive vector (WorZ) boson that decays hadronically and large missing transverse momentum. The data sample was collected with the ATLAS experiment at the Large Hadron Collider from 2015 to 2018 and corresponds to an integrated luminosity of 140 fb−1. No significant excess over the Standard Model expectation is observed. Model-independent 95% confidence-level limits on the visible cross-section that range from 0.3 fb to 79.5 fb are obtained for non-Standard-Model processes. Exclusion limits are also presented for models with axion-like particles, for two-Higgs-doublet models with a pseudo-scalar mediator between the Standard Model and the dark sector, for the invisible decay of the Higgs boson and for pair-produced weakly interacting dark matter candidates.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract This paper reports a summary of searches for a fermionic dark matter candidate in the context of theoretical models characterised by a mediator particle exchange in thes-channel. The data sample considered consists ofppcollisions delivered by the Large Hadron Collider during its Run 2 at a centre-of-mass energy of$$\sqrt{s} = 13\,\textrm{TeV}$$ and recorded by the ATLAS detector, corresponding to up to 140 fb$$^{-1}$$ . The interpretations of the results are based on simplified models where the new mediator particles can be spin-0, with scalar or pseudo-scalar couplings to fermions, or spin-1, with vector or axial-vector couplings to fermions. Exclusion limits are obtained from various searches characterised by final states with resonant production of Standard Model particles, or production of Standard Model particles in association with large missing transverse momentum.more » « less
- 
            The associated production of Higgs and bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to and bosons. In this Letter, two searches for this process are presented, using of proton-proton collision data at recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the and bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of quarks and boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond , and the observed (expected) upper limit set on the cross section for vector-boson fusion production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration2024CERNmore » « less
- 
            This paper presents a search for exotic decays of the Higgs boson into a pair of new pseudoscalar particles, H → aa, where one pseudoscalar decays into a b-quark pair and the other decays into a τ-lepton pair, in the mass range 12 ≤ ma ≤ 60 GeV. The analysis uses pp collision data at \sqrt{s} = 13 TeV collected with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb−1. No significant excess above the Standard Model (SM) prediction is observed. Assuming the SM Higgs boson production cross section, the search sets upper limits at 95% confidence level on the branching ratio of Higgs bosons decaying into BR (H → aa → bb\tau\tau), between 2.2% and 3.9% depending on the pseudoscalar mass.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
